Vocal learning as a preadaptation for the evolution of human beat perception and synchronization

Author:

Patel Aniruddh D.12ORCID

Affiliation:

1. Department of Psychology, Tufts University, Medford, MA, USA

2. Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada

Abstract

The human capacity to synchronize movements to an auditory beat is central to musical behaviour and to debates over the evolution of human musicality. Have humans evolved any neural specializations for music processing, or does music rely entirely on brain circuits that evolved for other reasons? The vocal learning and rhythmic synchronization hypothesis proposes that our ability to move in time with an auditory beat in a precise, predictive and tempo-flexible manner originated in the neural circuitry for complex vocal learning. In the 15 years since the hypothesis was proposed a variety of studies have supported it. However, one study has provided a significant challenge to the hypothesis. Furthermore, it is increasingly clear that vocal learning is not a binary trait animals have or lack, but varies more continuously across species. In the light of these developments and of recent progress in the neurobiology of beat processing and of vocal learning, the current paper revises the vocal learning hypothesis. It argues that an advanced form of vocal learning acts as a preadaptation for sporadic beat perception and synchronization (BPS), providing intrinsic rewards for predicting the temporal structure of complex acoustic sequences. It further proposes that in humans, mechanisms of gene-culture coevolution transformed this preadaptation into a genuine neural adaptation for sustained BPS. The larger significance of this proposal is that it outlines a hypothesis of cognitive gene-culture coevolution which makes testable predictions for neuroscience, cross-species studies and genetics. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference198 articles.

1. Without it no music: cognition, biology and evolution of musicality

2. Patel, A D. 2008 Music, language, and the brain. New York, NY: Oxford University Press.

3. Statistical universals reveal the structures and functions of human music

4. Nettl B. 2015 The study of ethnomusicology: thirty-three discussions, 3rd edn. Urbana, IL: University of Illinois Press.

5. Newborn infants detect the beat in music

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3