The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species

Author:

Wion Andreas P.1ORCID,Pearse Ian S.2ORCID,Rodman Kyle C.3,Veblen Thomas T.4ORCID,Redmond Miranda D.1ORCID

Affiliation:

1. Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA

2. US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA

3. Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA

4. Department of Geography, University of Colorado, Boulder, CO 80302, USA

Abstract

We aimed to disentangle the patterns of synchronous and variable cone production (i.e. masting) and its relationship to climate in two conifer species native to dry forests of western North America. We used cone abscission scars to reconstruct ca 15 years of recent cone production in Pinus edulis and Pinus ponderosa , and used redundancy analysis to relate time series of annual cone production to climate indices describing the North American monsoon and the El Niño Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in cone production varies substantially between species. Cone production among populations of P. edulis was much more spatially synchronous and more closely related to large-scale modes of climate variability than among populations of P. ponderosa . Large-scale synchrony in P. edulis cone production was associated with the North American monsoon and we identified a dipole pattern of regional cone production associated with ENSO phase. In P. ponderosa , these climate indices were not strongly associated with cone production, resulting in asynchronous masting patterns among populations. This study helps frame our understanding of mast seeding as a life-history strategy and has implications for our ability to forecast mast years in these species. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.

Funder

Colorado Native Plant Society

John Marr Ecology Fund

Joint Fire Science Program

Graduate Degree Program in Ecology, Colorado State University

National Institute of Food and Agriculture

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3