Affiliation:
1. Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60300 Brno, Czech Republic
Abstract
Energy metabolism is a fundamental property of life providing the energy for all processes and functions within an organism. As it is temperature-dependent, it mediates the effects of changing climate on ectotherm fitness and population dynamics. Though resting metabolic rate is a highly labile trait, part of its variation is individually consistent. Recent findings show that resting metabolic rate contains consistent variation not only in the elevations (intercepts) but also in the slopes of individual thermal dependence curves, challenging the thermal dependence assumption for this trait in several ectotherm taxa. I argue that among-individual variation in thermal metabolic curves represents a previously undetected component of ectotherm response to climate change, potentially affecting their adaptive capacity and population resilience under increasing stochasticity of thermal environment. Future studies need to examine not only the amount of among-individual variation in thermal metabolic curves across phylogenetic contexts but also other aspects concerning its mechanisms and adaptive significance to improve predictions about the impact of climate change on ectotherm population dynamics.
This article is part of the theme issue ‘The evolutionary significance of variation in metabolic rates’.
Funder
Instirute of Vertebrate Biology CAS
Grantová Agentura České Republiky
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献