How do stochastic processes and genetic threshold effects explain incomplete penetrance and inform causal disease mechanisms?

Author:

Jenkins Dagan1ORCID

Affiliation:

1. Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK

Abstract

Incomplete penetrance is the rule rather than the exception in Mendelian disease. In syndromic monogenic disorders, phenotypic variability can be viewed as the combination of incomplete penetrance for each of multiple independent clinical features. Within genetically identical individuals, such as isogenic model organisms, stochastic variation at molecular and cellular levels is the primary cause of incomplete penetrance according to a genetic threshold model. By defining specific probability distributions of causal biological readouts and genetic liability values, stochasticity and incomplete penetrance provide information about threshold values in biological systems. Ascertainment of threshold values has been achieved by simultaneous scoring of relatively simple phenotypes and quantitation of molecular readouts at the level of single cells. However, this is much more challenging for complex morphological phenotypes using experimental and reductionist approaches alone, where cause and effect are separated temporally and across multiple biological modes and scales. Here I consider how causal inference, which integrates observational data with high confidence causal models, might be used to quantify the relative contribution of different sources of stochastic variation to phenotypic diversity. Collectively, these approaches could inform disease mechanisms, improve predictions of clinical outcomes and prioritize gene therapy targets across modes and scales of gene function. This article is part of a discussion meeting issue ‘Causes and consequences of stochastic processes in development and disease’.

Funder

Wellcome Trust

Publisher

The Royal Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FBLN2 is associated with Goldenhar syndrome and is essential for cranial neural crest cell development;Annals of the New York Academy of Sciences;2024-07

2. Stochastic processes in development and disease;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3