From science to society: implementing effective strategies to improve wild pollinator health

Author:

Stout Jane C.1ORCID,Dicks Lynn V.2ORCID

Affiliation:

1. School of Natural Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland

2. Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Abstract

Despite a substantial increase in scientific, public and political interest in pollinator health and many practical conservation efforts, incorporating initiatives across a range of scales and sectors, pollinator health continues to decline. We review existing pollinator conservation initiatives and define their common structural elements. We argue that implementing effective action for pollinators requires further scientific understanding in six key areas: (i) status and trends of pollinator populations; (ii) direct and indirect drivers of decline, including their interactions; (iii) risks and co-benefits of pollinator conservation actions for ecosystems; (iv) benefits of pollinator conservation for society; (v) the effectiveness of context-specific, tailored, actionable solutions; and (vi) integrated frameworks that explicitly link benefits and values with actions to reverse declines. We propose use of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) conceptual framework to link issues and identify critical gaps in both understanding and action for pollinators. This approach reveals the centrality of addressing the recognized indirect drivers of decline, such as patterns of global trade and demography, which are frequently overlooked in current pollinator conservation efforts. Finally, we discuss how existing and new approaches in research can support efforts to move beyond these shortcomings in pollinator conservation initiatives. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3