Effects of species interactions on the potential for evolution at species' range limits

Author:

Alexander Jake M.1ORCID,Atwater Daniel Z.2,Colautti Robert I.3ORCID,Hargreaves Anna L.4ORCID

Affiliation:

1. Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland

2. Biology Department, Earlham College, 801 National Rd. W, Richmond, IN 47374, USA

3. Biology Department, Queen's University, 116 Barrie, St. Kingston, ON, Canada, K7 L 3N6

4. Department of Biology, McGill University, 1205 Dr Penfield Av, Montreal, QC, Canada H3A 1B1

Abstract

Species’ ranges are limited by both ecological and evolutionary constraints. While there is a growing appreciation that ecological constraints include interactions among species, like competition, we know relatively little about how interactions contribute to evolutionary constraints at species' niche and range limits. Building on concepts from community ecology and evolutionary biology, we review how biotic interactions can influence adaptation at range limits by impeding the demographic conditions that facilitate evolution (which we term a ‘demographic pathway to adaptation’), and/or by imposing evolutionary trade-offs with the abiotic environment (a ‘trade-offs pathway’). While theory for the former is well-developed, theory for the trade-offs pathway is not, and empirical evidence is scarce for both. Therefore, we develop a model to illustrate how fitness trade-offs along biotic and abiotic gradients could affect the potential for range expansion and niche evolution following ecological release. The model shows that which genotypes are favoured at species' range edges can depend strongly on the biotic context and the nature of fitness trade-offs. Experiments that characterize trade-offs and properly account for biotic context are needed to predict which species will expand their niche or range in response to environmental change.This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’.

Funder

H2020 European Research Council

Social Sciences and Humanities Research Council of Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3