Hallucinations on demand: the utility of experimentally induced phenomena in hallucination research

Author:

Rogers Sebastian1ORCID,Keogh Rebecca1ORCID,Pearson Joel1ORCID

Affiliation:

1. School of Psychology, The University of New South Wales, Sydney, Australia

Abstract

Despite the desire to delve deeper into hallucinations of all types, methodological obstacles have frustrated development of more rigorous quantitative experimental techniques, thereby hampering research progress. Here, we discuss these obstacles and, with reference to visual phenomena, argue that experimentally induced phenomena (e.g. hallucinations induced by flickering light and classical conditioning) can bring hallucinations within reach of more objective behavioural and neural measurement. Expanding the scope of hallucination research raises questions about which phenomena qualify as hallucinations, and how to identify phenomena suitable for use as laboratory models of hallucination. Due to the ambiguity inherent in current hallucination definitions, we suggest that the utility of phenomena for use as laboratory hallucination models should be represented on a continuous spectrum, where suitability varies with the degree to which external sensory information constrains conscious experience. We suggest that existing strategies that group pathological hallucinations into meaningful subtypes based on hallucination characteristics (including phenomenology, disorder and neural activity) can guide extrapolation from hallucination models to other hallucinatory phenomena. Using a spectrum of phenomena to guide scientific hallucination research should help unite the historically separate fields of psychophysics, cognitive neuroscience and clinical research to better understand and treat hallucinations, and inform models of consciousness. This article is part of the theme issue ‘Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation’.

Funder

Australian Research Council

National Health and Medical Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3