Visuo-vestibular heading perception: a model system to study multi-sensory decision making

Author:

Zeng Zhao12,Zhang Ce12,Gu Yong12ORCID

Affiliation:

1. CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China

2. University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China

Abstract

Integrating noisy signals across time as well as sensory modalities, a process named multi-sensory decision making (MSDM), is an essential strategy for making more accurate and sensitive decisions in complex environments. Although this field is just emerging, recent extraordinary works from different perspectives, including computational theory, psychophysical behaviour and neurophysiology, begin to shed new light onto MSDM. In the current review, we focus on MSDM by using a model system of visuo-vestibular heading. Combining well-controlled behavioural paradigms on virtual-reality systems, single-unit recordings, causal manipulations and computational theory based on spiking activity, recent progress reveals that vestibular signals contain complex temporal dynamics in many brain regions, including unisensory, multi-sensory and sensory-motor association areas. This challenges the brain for cue integration across time and sensory modality such as optic flow which mainly contains a motion velocity signal. In addition, new evidence from the higher-level decision-related areas, mostly in the posterior and frontal/prefrontal regions, helps revise our conventional thought on how signals from different sensory modalities may be processed, converged, and moment-by-moment accumulated through neural circuits for forming a unified, optimal perceptual decision. This article is part of the theme issue ‘Decision and control processes in multisensory perception’.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Science and Technology Innovation 2030 Major Program

Shanghai Municipal Science and Technology Major Project

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incongruent active head rotations increase visual motion detection thresholds;Neuroscience of Consciousness;2024-01-01

2. How the brain controls decision making in a multisensory world;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-08-07

3. Self-motion perception and sequential decision-making: where are we heading?;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3