Monitoring insect numbers and biodiversity with a vertical-beam entomological radar

Author:

Drake V. Alistair12ORCID,Hao Zhenhua13ORCID,Wang Haikou4ORCID

Affiliation:

1. School of Science, The University of New South Wales, Canberra, ACT 2610, Australia

2. Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia

3. Australian Bureau of Agricultural and Resource Economics and Science, Australian Government, Canberra, ACT 2601, Australia

4. Australian Plague Locust Commission, Department of Agriculture, Fisheries and Forestry, Australian Government, Canberra, ACT 2601, Australia

Abstract

Concerns about perceived widespread declines in insect numbers have led to recognition of a requirement for long-term monitoring of insect biodiversity. Here we examine whether an existing, radar-based, insect monitoring system developed for research on insect migration could be adapted to this role. The radar detects individual larger (greater than 10 mg) insects flying at heights of 150–2550 m and estimates their size and mass. It operates automatically and almost continuously through both day and night. Accumulation of data over a ‘half-month’ (approx. 15 days) averages out weather effects and broadens the source area of the wind-borne observation sample. Insect counts are scaled or interpolated to compensate for missed observations; adjustment for variation of detectability with range and insect size is also possible. Size distributions for individual days and nights exhibit distinct peaks, representing different insect types, and Simpson and Shannon–Wiener indices of biodiversity are calculated from these. Half-month count, biomass and index statistics exhibit variations associated with the annual cycle and year to year changes that can be attributed to drought and periods of high rainfall. While species-based biodiversity measures cannot be provided, the radar's capacity to estimate insect biomass over a wide area indicates utility for tracking insect population sizes. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a toolkit for global insect biodiversity monitoring;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3