Long-term environmental stability does not erode plasticity in nest building responses to changing ambient conditions

Author:

Chung Meng-Han Joseph1ORCID,Barber Iain2ORCID,Head Megan L.1ORCID

Affiliation:

1. Division of Ecology and Evolution, Research School of Biology, Australian National University, 2601, Canberra, Australian Capital Territory, Australia

2. Department of Life Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK

Abstract

The primary function of animal nests is to protect developing offspring from hostile and fluctuating environments. Animal builders have been shown to adjust nest construction in response to changes in their environment. However, the extent of this plasticity, and its dependence on an evolutionary history of environmental variability, is not well understood. To test whether an evolutionary history with flowing water impacts male ability to adjust nests in response to flow regime, we collected three-spined sticklebacks (Gasterosteus aculeatus) from three lakes and three rivers, and brought them into reproductive condition in controlled laboratory aquaria. Males were then allowed to nest under both flowing and static conditions. Nest building behaviour, nest structure and nest composition were all recorded. In comparison to males building nests under static conditions, males building in flowing water took longer to construct their nests and invested more in nesting behaviour. Moreover, nests built in flowing water contained less material, were smaller, more compact, neater and more elongated than nests built under static conditions. Whether males came from rivers or lakes had little impact on nesting activities, or male capacity to adjust behaviours in response to flow treatment. Our findings suggest that aquatic animals which have experienced a stable environment over a long period of time retain plasticity in nest-building behaviours that allow them to adjust nests to ambient flow conditions. This ability may prove crucial in coping with the increasingly unpredictable flow regimes found in anthropogenically altered waterways and those resulting from global climate change.This article is part of the theme issue ‘The evolutionary ecology of nests: a cross-taxon approach’.

Funder

UK Natural Environment Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The evolutionary ecology of nests: a cross-taxon approach;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-07-10

2. Bird nest building: visions for the future;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3