Affiliation:
1. School of Biology, University of Leeds, Leeds LS2 9JT, UK
2. Department of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
Abstract
Coordinated responses in eusocial insect colonies arise from worker interaction networks that enable collective processing of ecologically relevant information. Previous studies have detected a structural motif in these networks known as the feed-forward loop, which functions to process information in other biological regulatory networks (e.g. transcriptional networks). However, the processes that generate feed-forward loops among workers and the consequences for information flow within the colony remain largely unexplored. We constructed an agent-based model to investigate how individual variation in activity and movement shaped the production of feed-forward loops in a simulated insect colony. We hypothesized that individual variation along these axes would generate feed-forward loops by driving variation in interaction frequency among workers. We found that among-individual variation in activity drove over-representation of feed-forward loops in the interaction networks by determining the directionality of interactions. However, despite previous work linking feed-forward loops with efficient information transfer, activity variation did not promote faster or more efficient information flow, thus providing no support for the hypothesis that feed-forward loops reflect selection for enhanced collective functioning. Conversely, individual variation in movement trajectory, despite playing no role in generating feed-forward loops, promoted fast and efficient information flow by linking together otherwise unconnected regions of the nest.
Funder
Horizon 2020 Framework Programme
Leeds Doctoral Scholarship
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献