Affiliation:
1. School of Engineering, University of Edinburgh, Edinburgh, UK
2. AI Research, Canon Medical Research Europe, Edinburgh, Lothian, UK
Abstract
Causal machine learning (CML) has experienced increasing popularity in healthcare. Beyond the inherent capabilities of adding domain knowledge into learning systems, CML provides a complete toolset for investigating how a system would react to an intervention (e.g. outcome given a treatment). Quantifying effects of interventions allows actionable decisions to be made while maintaining robustness in the presence of confounders. Here, we explore how causal inference can be incorporated into different aspects of clinical decision support systems by using recent advances in machine learning. Throughout this paper, we use Alzheimer’s disease to create examples for illustrating how CML can be advantageous in clinical scenarios. Furthermore, we discuss important challenges present in healthcare applications such as processing high-dimensional and unstructured data, generalization to out-of-distribution samples and temporal relationships, that despite the great effort from the research community remain to be solved. Finally, we review lines of research within causal representation learning, causal discovery and causal reasoning which offer the potential towards addressing the aforementioned challenges.
Funder
Canon Medical Systems Corporation
Royal Academy of Engineering
Alan Turing Institute
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献