Dehydrogenation versus deprotonation of disaccharide molecules in vacuum: a thorough theoretical investigation

Author:

Andriyevsky Bohdan1ORCID,Tarrat Nathalie2,Cortés Juan3ORCID,Schön Johann Christian4

Affiliation:

1. Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich Street 2, 74-453 Koszalin, Poland

2. CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France

3. LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France

4. Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany

Abstract

Dehydrogenation and deprotonation of sucrose and trehalose molecules in vacuum is theoretically studied by using ab initio calculations in the framework of the density functional theory. The differences in the structural, electronic, energetic and vibrational properties of dehydrogenated and deprotonated molecules are discussed, depending on the site from which the hydrogen atom or the proton has been removed. The dehydrogenated molecules are found to be stable, regardless of which hydrogen atom is removed. This contrasts with the instability of the deprotonated molecules, where break-ups or structural reorganizations of the molecule are observed in 20–30% of the cases, but only when the hydrogen atom whose proton is removed was bonded to a carbon atom. Considering the stability and possible rearrangements of the hydrogen network of the deprotonated/dehydrogenated molecule, the formation of additional hydrogen-bridge bonds compared with the nominal molecule appears to be more pronounced for the deprotonated molecules than for the dehydrogenated ones. Moreover, our calculations show that the hydrogen-transfer energy barriers are usually larger for the deprotonated molecules than for the dehydrogenated ones. Finally, compared with the nominal molecule, the vibrational frequency spectrum is shifted to lower frequencies for both the dehydrogenated and the deprotonated molecules.

Funder

Warsaw University

Max Planck Computing and Data Facility in Garching and

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3