Physical simulation of the influence of the original rock strength on the compaction characteristics of caving rock in longwall goaf

Author:

Qin Yan1ORCID,Xu Nengxiong1,Guo Yuxi1,Li Jinyang1,Han Wenbin2

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Xueyuan Road 29, Beijing 100083, People's Republic of China

2. Shanxi Traffic Layout Reconnaissance Design Institute Co. Ltd, Wuluo Street 27, Taiyuan 030032, People's Republic of China

Abstract

The compaction characteristics of broken rock in a caving zone have a significant impact on the movement law of overburden and the prediction of surface subsidence. The mechanical properties of the broken rock were clearly affected by the original rock strength of the roof. Based on the similarity theory, the ‘quartz sand-gypsum-lime-water’ mixed material was used to make similar samples of original rocks with different strengths, and the compaction mechanical behaviour of broken loose rock masses with different original rock strengths was studied. The results show that (i) the greater the original rock strength of broken rock, the shorter the initial compaction stage, the earlier the transition and stable compaction stages and the lower the degree of compaction; (ii) the initial deformation modulus and ultimate axial strain had a linear relationship with the original strength of the broken rock; and (iii) under different axial pressures, the deformation modulus increased with the increasing original rock strength of the broken rock. The tangent modulus and axial stress change approximately linearly, the secant modulus and stress change linearly, and the tangent modulus and secant modulus exhibit an exponential/hyperbolic relationship with the strain. The research results have high engineering application value for using numerical method to predict the mechanical behaviour of roof rock mass with different strength in coal mining and analysing the surface subsidence.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3