Fluid–structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients

Author:

Pons R.1ORCID,Guala A.2,Rodríguez-Palomares J. F.2,Cajas J. C.34,Dux-Santoy L.2ORCID,Teixidó-Tura G.2,Molins J. J.1,Vázquez M.35ORCID,Evangelista A.2,Martorell J.1ORCID

Affiliation:

1. Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain

2. Hospital Universitari Vall d'Hebron, Department of Cardiology, CIBER-CV, Vall d'Hebron Institut de recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain

3. Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, C/Jordi Girona 29, 08034 Barcelona, Spain

4. Escuela Nacional de Estudios Superiors, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km 4, Ucú, Yucatán, 97357, México

5. ELEM Biotech, Calle Rossello 36, 08029 Barcelona, Spain

Abstract

Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data; and to assess the capacity of advanced fluid dynamics markers to stratify aneurysm progression risk. Eight Marfan syndrome (MFS) patients, four with stable and four with dilating aneurysms of the proximal aorta, and four healthy controls were studied. FSI and CFD simulations were performed with MRI-derived geometry, inlet velocity field and Young's modulus. Flow displacement, jet angle and maximum velocity evaluated from FSI and CFD simulations were compared to 4D flow MRI data. A dimensionless parameter, the shear stress ratio (SSR), was evaluated from FSI and CFD simulations and assessed as potential correlate of aneurysm progression. FSI simulations successfully matched MRI data regarding descending to ascending aorta flow rates ( R 2 = 0.92) and pulse wave velocity ( R 2 = 0.99). Compared to CFD, FSI simulations showed significantly lower percentage errors in ascending and descending aorta in flow displacement (−46% ascending, −41% descending), jet angle (−28% ascending, −50% descending) and maximum velocity (−37% ascending, −34% descending) with respect to 4D flow MRI. FSI- but not CFD-derived SSR differentiated between stable and dilating MFS patients. Fluid dynamic simulations of the thoracic aorta require fluid–solid interaction to properly reproduce complex haemodynamics. FSI- but not CFD-derived SSR could help stratifying MFS patients.

Funder

Ministerio de Economía y Competitividad

Fundació la Marató de TV3

FP7 People: Marie-Curie Actions

Instituto de Salud Carlos III

“la Caixa” Foundation

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3