Quantum chemical molecular dynamics and metadynamics simulation of aluminium binding to amyloid-β and related peptides

Author:

Platts James A.1ORCID

Affiliation:

1. School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK

Abstract

We report semi-empirical tight-binding simulations of the interaction between Al(III) and biologically relevant peptides. The GFN2-XTB method is shown to accurately reproduce previously reported and density functional theory (DFT)-calculated geometries of model systems. Molecular dynamics simulations based on this method are able to sample peptide flexibility over timescales of up to nanoseconds, but these timescales are insufficient to explore potential changes in metal–peptide binding modes. To achieve this, metadynamics simulations using root mean square deviation as a collective variable were employed. With suitably chosen biasing potentials, these are able to efficiently explore diverse coordination modes, for instance, through Glu and/or Asp residues in a model peptide. Using these methods, we find that Al(III) binding to the N-terminal sequence of amyloid-β is highly fluxional, with all acidic sidechains and several backbone oxygens participating in coordination. We also show that such simulations could provide a means to predict a priori possible binding modes as a precursor to longer, atomistic simulations.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3