Critical slowing down associated with critical transition and risk of collapse in crypto-currency

Author:

Tu Chengyi12ORCID,D'Odorico Paolo2,Suweis Samir3ORCID

Affiliation:

1. School of Ecology and Environmental Science, Yunnan University, Kunming 650091, People's Republic of China

2. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA

3. Department of Physics and Astronomy, University of Padova, Padova 35131, Italy

Abstract

The year 2017 saw the rise and fall of the crypto-currency market, followed by high variability in the price of all crypto-currencies. In this work, we study the abrupt transition in crypto-currency residuals, which is associated with the critical transition (the phenomenon of critical slowing down) or the stochastic transition phenomena. We find that, regardless of the specific crypto-currency or rolling window size, the autocorrelation always fluctuates around a high value, while the standard deviation increases monotonically. Therefore, while the autocorrelation does not display the signals of critical slowing down, the standard deviation can be used to anticipate critical or stochastic transitions. In particular, we have detected two sudden jumps in the standard deviation, in the second quarter of 2017 and at the beginning of 2018, which could have served as the early warning signals of two major price collapses that have happened in the following periods. We finally propose a mean-field phenomenological model for the price of crypto-currency to show how the use of the standard deviation of the residuals is a better leading indicator of the collapse in price than the time-series' autocorrelation. Our findings represent a first step towards a better diagnostic of the risk of critical transition in the price and/or volume of crypto-currencies.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference40 articles.

1. Cryptocurrency bitcoin: disruption, challenges and opportunities;Raymaekers W;J. Paym. Strategy Syst.,2015

2. Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network

3. Nakamoto S. 2008 Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin. (https://bitcoin.org/bitcoin.pdf)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3