Evolution of reduced minimum critical size as a response to selection for rapid pre-adult development in Drosophila melanogaster

Author:

Sharma Khushboo1ORCID,Mishra Nalini1,Shakarad Mallikarjun N.1ORCID

Affiliation:

1. Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, Delhi 110007, India

Abstract

Adult body size in holometabolus insects is directly proportional to the time spent during the larval period. The larval duration can be divided into two parts: (i) pre-critical duration—time required to attain a critical size/critical weight that would result in successful completion of development and metamorphosis even under non-availability of nutrition beyond the time of attainment of critical size, and (ii) post-critical duration—the time duration from the attainment of critical size till pupation. It is of interest to decipher the relative contribution of the two larval growth phases (from the hatching of the egg to the attainment of critical size, and from the attainment of critical size to pupation) to the final adult size. Many studies using Drosophila melanogaster have shown that selecting populations for faster development results in the emergence of small adults. Some of these studies have indirectly reported the evolution of smaller critical size. Using two kinds of D. melanogaster populations, one of which is selected for faster/accelerated pre-adult development and the other their ancestral control, we demonstrate that the final adult size is determined by the time spent as larvae post the attainment of critical size despite having increased growth rate during the second larval instar. Our populations under selection for faster pre-adult development are exhibiting adaptive bailout due to intrinsic food limitation as against extrinsic food limitation in the yellow dung fly.

Funder

Council for Scientific and Industrial Research , India

University of Delhi, India

Publisher

The Royal Society

Subject

Multidisciplinary

Reference44 articles.

1. The role of larval fat cells in adult Drosophila melanogaster

2. Insect Fat Body: Energy, Metabolism, and Regulation

3. Energetics of metamorphosis in Drosophila melanogaster

4. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate;Nijhout HF;J. Exp. Biol.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3