Kink-type solutions of the SIdV equation and their properties

Author:

Zhang Guofei1ORCID,He Jingsong2ORCID,Wang Lihong1,Mihalache Dumitru3

Affiliation:

1. School of Mathematics and Statistics, Ningbo University, Zhejiang 315211, People’s Republic of China

2. Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People’s Republic of China

3. Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Magurele 077125, Romania

Abstract

We study the nonlinear integrable equation, u t + 2(( u x u xx )/ u ) = ϵu xxx , which is invariant under scaling of dependent variable and was called the SIdV equation (see Sen et al. 2012 Commun. Nonlinear Sci. Numer. Simul . 17 , 4115–4124 ( doi:10.1016/j.cnsns.2012.03.001 )). The order- n kink solution u [ n ] of the SIdV equation, which is associated with the n -soliton solution of the Korteweg–de Vries equation, is constructed by using the n -fold Darboux transformation (DT) from zero ‘seed’ solution. The kink-type solutions generated by the onefold, twofold and threefold DT are obtained analytically. The key features of these kink-type solutions are studied, namely their trajectories, phase shifts after collision and decomposition into separate single kink solitons.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3