Calculation on surface energy and electronic properties of CoS 2

Author:

Zhu Yan-li1ORCID,Wang Cong-Jie1,Gao Fei2,Xiao Zhi-xia1,Zhao Peng-long3,Wang Jian-yong4

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China

2. Battery Energy Storage Technology Laboratory, China Electric Power Research Institute, Beijing 100192, People's Republic of China

3. Qaidam Xinghua Lithium Salt Co., Ltd, No. 1 Dahua Street, Dachaidan, Haixi, Qinghai, 817000, People's Republic of China

4. State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi, Guizhou 563003, People's Republic of China

Abstract

Density functional theory was employed to investigate the (111), (200), (210), (211) and (220) surfaces of CoS 2 . The surface energies were calculated with a sulfur environment using first-principle-based thermodynamics. It is founded that surfaces with metal atoms at their outermost layer have higher energy. The stoichiometric (220) surface terminated by two layer of sulfur atoms is most stable under the sulfur-rich condition, while the non-stoichiometric (211) surface terminated by a layer of Co atoms has the lower energy under the sulfur-poor environment. The electric structure results show that the front valence electrons of (200) surface are active, indicating that there may be some active sites on this face. There is an energy gap between the stoichiometric (220) and (211), which has low Fermi energy, indicating that their electronic structures are dynamically stable. Spin-polarized bands are calculated on the stoichiometric surfaces, and these two (200) and (210) surfaces are predicted to be noticeably spin-polarized. The Bravais–Friedel–Donnay–Harker (BFDH) method is adopted to predict crystal growth habit. The results show that the most important crystal planes for the CoS 2 crystal growth are (111) and (200) planes, and the macroscopic morphology of CoS 2 crystal may be spherical, cubic, octahedral, prismatic or plate-shaped, which have been verified by experiments.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3