Spectroscopic and molecular docking studies reveal binding characteristics of nazartinib (EGF816) to human serum albumin

Author:

Almehizia Abdulrahman A.1ORCID,AlRabiah Haitham1,Bakheit Ahmed H.12,Hassan Eman S. G.3ORCID,Herqash Rashed N.1,Abdelhameed Ali Saber1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia

2. Department of Chemistry, Faculty of Science and Technology, El-Neelain University, PO Box 12702, Khartoum 11121, Sudan

3. Developmental Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt

Abstract

The interactions of novel anti-cancer therapeutic agents with the different plasma and tissue components, specifically serum albumins, have lately gained considerable attention due to the significant influence of such interactions on the pharmacokinetics and/or -dynamics of this important class of therapeutics. Nazartinib (EGF 816; NAZ) is a new anti-cancer candidate proposed as a third-generation epidermal growth factor receptor tyrosine kinase inhibitor that is being developed and clinically tested for the management of non-small cell lung cancer. The current study aimed to characterize the interaction between NAZ and human serum albumin (HSA) using experimental and theoretical approaches. Experimental results of fluorescence quenching of HSA induced by NAZ revealed the development of a statically formed complex between NAZ and HSA. Interpretation of the observed fluorescence data using Stern–Volmer, Lineweaver–Burk and double-log formulae resulted in binding constants for HSA-NAZ complex in the range of (2.34–2.81) × 10 4 M –1 over the studied temperatures. These computed values were further used to elucidate thermodynamic attributes of the interaction, which showed that NAZ spontaneously binds to HSA with a postulated electrostatic force-driven interaction. This was further verified by theoretical examination of the NAZ docking on the HSA surface that revealed an HSA-NAZ complex where NAZ is bound to HSA Sudlow site I driven by hydrogen bonding in addition to electrostatic forces in the form of pi-H bond. The HSA binding pocket for NAZ was shown to encompass ARG 257, ARG 222, LYS 199 and GLU 292 with a total binding energy of −25.59 kJ mol –1 .

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3