Photocatalytic inactivation of Escherichia coli under UV light irradiation using large surface area anatase TiO 2 quantum dots

Author:

Ahmed Faheem1ORCID,Awada Chawki1ORCID,Ansari Sajid Ali1,Aljaafari Abdullah1,Alshoaibi Adil1

Affiliation:

1. Physics Department, College of Science, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia

Abstract

In this study, high specific surface areas (SSAs) of anatase titanium dioxide (TiO 2 ) quantum dots (QDs) were successfully synthesized through a novel one-step microwave–hydrothermal method in rapid synthesis time (20 min) without further heat treatment. XRD analysis and HR-TEM images showed that the as-prepared TiO 2 QDs of approximately 2 nm size have high crystallinity with anatase phase. Optical properties showed that the energy band gap ( E g ) of as-prepared TiO 2 QDs was 3.60 eV, which is higher than the standard TiO 2 band gap, which might be due to the quantum size effect. Raman studies showed shifting and broadening of the peaks of TiO 2 QDs due to the reduction of the crystallite size. The obtained Brunauer–Emmett–Teller specific surface area (381 m 2 g −1 ) of TiO 2 QDs is greater than the surface area (181 m 2 g −1 ) of commercial TiO 2 nanoparticles. The photocatalytic activities of TiO 2 QDs were conducted by the inactivation of Escherichia coli under ultraviolet light irradiation and compared with commercially available anatase TiO 2 nanoparticles. The photocatalytic inactivation ability of E. coli was estimated to be 91% at 60 µg ml −1 for TiO 2 QDs, which is superior to the commercial TiO 2 nanoparticles. Hence, the present study provides new insight into the rapid synthesis of TiO 2 QDs without any annealing treatment to increase the absorbance of ultraviolet light for superior photocatalytic inactivation ability of E. coli .

Funder

Deanship of Scientific Research, King Faisal University

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3