Peanut meal-based wood adhesives enhanced by urea and epichlorohydrin

Author:

Chen Chen1ORCID,Chen Fusheng1ORCID,Liu Boye1ORCID,Du Yan1,Liu Chen1,Xin Ying1,Liu Kunlun1

Affiliation:

1. College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province 450001, People's Republic of China

Abstract

Peanut meal (PM) has recently emerged as a potential protein source for wood adhesives, owing to superior features such as high availability, renewability and eco-friendliness. However, the poor properties of unmodified PM-based wood adhesives, compared with their petroleum-derived counterparts, limit their use in high-performance applications. In order to promote the application of PM-based wood adhesives in plywood industry, urea (U) and epichlorohydrin (ECH) were used to enhance the properties of the adhesives and the modification mechanism was investigated. PM-based wood adhesives made with U and ECH were shown to possess sufficient water resistance and exhibited higher apparent viscosity and solid content than without. Fourier-transform infrared spectroscopy results suggested that U denatured PM protein and expose more reactive groups, allowing ECH to react better with U-treated PM protein to form a dense, cross-linked network which was the main reason for the improvement of the properties. The crystallinity increased from 2.7% to 11% compared with the control, indicating that the molecular structure of the resultant adhesive modified by U and ECH became more regular and compact owing to the cross-linked network structure. Thermogravimetry tests showed that decomposition temperature of the protein skeleton structure increased from 307°C to 314°C after U and ECH modification. Scanning electron microscopy images revealed that using U and ECH for adhesives resulted in a smooth protein surface which prevented moisture penetration and improved water resistance. PM-based adhesives thus represent potential candidates to replace petroleum-derived adhesives in the plywood industry, which will effectively promote the rapid development of eco-friendly adhesives and increase the added value of PM.

Funder

the 13th Five-year National Key Research and Development Plan

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3