Estimating leaf nitrogen concentration based on the combination with fluorescence spectrum and first-derivative

Author:

Yang Jian1ORCID,Du Lin2,Gong Wei3,Shi Shuo3,Sun Jia2

Affiliation:

1. Artificial Intelligence School, Wuchang University of Technology, Wuhan, Hubei 430223, People's Republic of China

2. School of Geography and Information Engineering, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China

3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei 430072, People's Republic of China

Abstract

Leaf nitrogen concentration (LNC) is a major indicator in the estimation of the crop growth status which has been diffusely applied in remote sensing. Thus, it is important to accurately obtain LNC by using passive or active technology. Laser-induced fluorescence can be applied to monitor LNC in crops through analysing the changing of fluorescence spectral information. Thus, the performance of fluorescence spectrum (FS) and first-derivative fluorescence spectrum (FDFS) for paddy rice (Yangliangyou 6 and Manly Indica) LNC estimation was discussed, and then the proposed FS + FDFS was used to monitor LNC by multivariate analysis. The results showed that the difference between FS ( R 2 = 0.781, s.d. = 0.078) and FDFS ( R 2 = 0.779, s.d. = 0.097) for LNC estimation by using the artificial neural network is not obvious. The proposed FS + FDFS can improved the accuracy of LNC estimation to some extent ( R 2 = 0.813, s.d. = 0.051). Then, principal component analysis was used in FS and FDFS, and extracted the main fluorescence characteristics. The results indicated that the proposed FS + FDFS exhibited higher robustness and stability for LNC estimation ( R 2 = 0.851, s.d. = 0.032) than that only using FS ( R 2 = 0.815, s.d. = 0.059) or FDFS ( R 2 = 0.801, s.d. = 0.065).

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China University of Geosciences

National Key Research and Development Program of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3