Automated analysis of scanning electron microscopic images for assessment of hair surface damage

Author:

Chu Fanny12ORCID,Anex Deon S.1ORCID,Jones A. Daniel3ORCID,Hart Bradley R.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA

2. Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA

3. Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA

Abstract

Mechanical damage of hair can serve as an indicator of health status and its assessment relies on the measurement of morphological features via microscopic analysis, yet few studies have categorized the extent of damage sustained, and instead have depended on qualitative profiling based on the presence or absence of specific features. We describe the development and application of a novel quantitative measure for scoring hair surface damage in scanning electron microscopic (SEM) images without predefined features, and automation of image analysis for characterization of morphological hair damage after exposure to an explosive blast. Application of an automated normalization procedure for SEM images revealed features indicative of contact with materials in an explosive device and characteristic of heat damage, though many were similar to features from physical and chemical weathering. Assessment of hair damage with tailing factor, a measure of asymmetry in pixel brightness histograms and proxy for surface roughness, yielded 81% classification accuracy to an existing damage classification system, indicating good agreement between the two metrics. Further ability of the tailing factor to score features of hair damage reflecting explosion conditions demonstrates the broad applicability of the metric to assess damage to hairs containing a diverse set of morphological features.

Funder

Lawrence Livermore National Laboratory

National Institute of Food and Agriculture

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3