Cell death and survival due to cytotoxic exposure modelled as a two-state Ising system

Author:

Arbabi Moghadam S.1,Rezania V.2,Tuszynski J. A.134

Affiliation:

1. Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1

2. Department of Physical Sciences, MacEwan University, Edmonton, Alberta, Canada T5 J 4S2

3. Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2

4. DIMEAS, Politecnico di Torino, Turin, Italy

Abstract

Cancer chemotherapy agents are assessed for their therapeutic utility primarily by their ability to cause apoptosis of cancer cells and their potency is given by an IC50 value. Chemotherapy uses both target-specific and systemic-action drugs and drug combinations to treat cancer. It is important to judiciously choose a drug type, its dosage and schedule for optimized drug selection and administration. Consequently, the precise mathematical formulation of cancer cells' response to chemotherapy may assist in the selection process. In this paper, we propose a mathematical description of the cancer cell response to chemotherapeutic agent exposure based on a time-tested physical model of two-state multiple-component systems near criticality. We describe the Ising model methodology and apply it to a diverse panel of cytotoxic drugs administered against numerous cancer cell lines in a dose–response manner. The analysed dataset was generated by the Netherlands Translational Research Center B.V. (Oncolines). This approach allows for an accurate and consistent analysis of cytotoxic agents' effects on cancer cell lines and reveals the presence or absence of the bystander effect through the interaction constant. By calculating the susceptibility function, we see the value of IC50 coinciding with the peak of this measure of the system's sensitivity to external perturbations.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3