Oncogene inference optimization using constraint-based modelling incorporated with protein expression in normal and tumour tissues

Author:

Wu Wu-Hsiung1,Li Fan-Yu1,Shu Yi-Chen1,Lai Jin-Mei2,Chang Peter Mu-Hsin34,Huang Chi-Ying F.56,Wang Feng-Sheng1ORCID

Affiliation:

1. Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan

2. Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan

3. Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan

4. Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan

5. Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan

6. Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan

Abstract

Cancer cells are known to exhibit unusual metabolic activity, and yet few metabolic cancer driver genes are known. Genetic alterations and epigenetic modifications of cancer cells result in the abnormal regulation of cellular metabolic pathways that are different when compared with normal cells. Such a metabolic reprogramming can be simulated using constraint-based modelling approaches towards predicting oncogenes. We introduced the tri-level optimization problem to use the metabolic reprogramming towards inferring oncogenes. The algorithm incorporated Recon 2.2 network with the Human Protein Atlas to reconstruct genome-scale metabolic network models of the tissue-specific cells at normal and cancer states, respectively. Such reconstructed models were applied to build the templates of the metabolic reprogramming between normal and cancer cell metabolism. The inference optimization problem was formulated to use the templates as a measure towards predicting oncogenes. The nested hybrid differential evolution algorithm was applied to solve the problem to overcome solving difficulty for transferring the inner optimization problem into the single one. Head and neck squamous cells were applied as a case study to evaluate the algorithm. We detected 13 of the top-ranked one-hit dysregulations and 17 of the top-ranked two-hit oncogenes with high similarity ratios to the templates. According to the literature survey, most inferred oncogenes are consistent with the observation in various tissues. Furthermore, the inferred oncogenes were highly connected with the TP53/AKT/IGF/MTOR signalling pathway through PTEN, which is one of the most frequently detected tumour suppressor genes in human cancer.

Funder

Ministry of Science and Technology, Taiwan

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3