Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon

Author:

Shahriar Sabuktagin Mohammed1ORCID,Syifa Hamdan Khairus2

Affiliation:

1. Department Electrical and Electronic Engineering, Uttara University, Dhaka 1230, Bangladesh

2. UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

Two-dimensional finite difference time domain (FDTD) simulations were performed for evaluating optical absorption enhancement and loss effects of triangular silver (Ag) nanowires embedded in silicon (Si) thin-film photovoltaic device structures. Near-bandgap absorption enhancement in Si was much larger than the reported values of other nanostructures from similar simulations. A nanowire with equal sides of 20 nm length showed 368-fold absorption enhancement whereas only 5× and 15× enhancement were reported for solid spherical and two-dimensional core-shell type nanostructures, respectively. Undesirable absorption loss in the metal of the nanowire was 3.55× larger than the absorption in Si which was comparable to the value reported for the spherical nanoparticle. Interestingly, as the height of the nanowire was increased to form a sharper tip, absorption loss showed a significant drop. For a nanowire with 20 nm base and 20 nm height, absorption loss was merely 1.91× larger than the absorption in Si at the 840 nm plasmon resonance. This drop could be attributed to weaker plasmon resonance manifested by lower metallic absorption in the spatial absorption map of the nanowire. However, absorption enhancement in Si was still large due to strong plasmonic fields at the sharper and longer tip, which was effective in enhancing absorption over a larger area in Si. Our work shows that the shape of a nanostructure and its optimization can significantly affect plasmonic absorption enhancement and loss performance in photovoltaic applications.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3