Prediction of polyproline II secondary structure propensity in proteins

Author:

O’Brien Kevin T.12,Mooney Catherine3,Lopez Cyril12,Pollastri Gianluca34,Shields Denis C.12ORCID

Affiliation:

1. School of Medicine, University College Dublin, Dublin, Ireland

2. Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland

3. School of Computer Science, University College Dublin, Dublin, Ireland

4. Institute for Discovery, University College Dublin, Dublin, Ireland

Abstract

Background: The polyproline II helix (PPIIH) is an extended protein left-handed secondary structure that usually but not necessarily involves prolines. Short PPIIHs are frequently, but not exclusively, found in disordered protein regions, where they may interact with peptide-binding domains. However, no readily usable software is available to predict this state. Results: We developed PPIIPRED to predict polyproline II helix secondary structure from protein sequences, using bidirectional recurrent neural networks trained on known three-dimensional structures with dihedral angle filtering. The performance of the method was evaluated in an external validation set. In addition to proline, PPIIPRED favours amino acids whose side chains extend from the backbone (Leu, Met, Lys, Arg, Glu, Gln), as well as Ala and Val. Utility for individual residue predictions is restricted by the rarity of the PPIIH feature compared to structurally common features. Conclusion: The software, available at http://bioware.ucd.ie/PPIIPRED , is useful in large-scale studies, such as evolutionary analyses of PPIIH, or computationally reducing large datasets of candidate binding peptides for further experimental validation.

Funder

Science Foundation Ireland

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3