Abstract
We show that, for any fixed ε > 0, there are asymptotically the same number of integers up to
x
, that are composed only of primes ⩽ y, in each arithmetic progression (mod
q
), provided that
y
⩾
q
1+e
and log
x
/log
q
→∞ as
y
→∞: this improves on previous estimates.
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Reference9 articles.
1. The distribution of smooth numbers in arithmetic progressions;Balog A.;Soc.,1992
2. Bombieri E. 1987/1974 Le grand crible dans la theorie analytique des nombres. 18.
3. Entiers sans grand facteur premier en progressions arithmetiques;Fouvry E.;Soc.,1991
4. Integers without large prime factors, II
5. Integers, without large prime factors, in arithmetic progressions, I
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献