The multifractal lagrangian nature of turbulence

Author:

Abstract

The multifractal formalism for the eulerian statistics of small-scale dynamics in turbulent flows is reviewed. Theoretical extensions of these results (the statistics of small volume averages of the energy dissipation rate) are used to predict properties of the probability distribution of the local energy dissipation rate at a fixed point. The improved parametrization of the eulerian statistics allows the lagrangian statistics (those for a fixed fluid particle in contrast to the eulerian statistics at a fixed point) to be determined exactly by using results derived as a consequence of incompressibility. Several properties of particle trajectories in a turbulent flow can be predicted with these new lagrangian statistics. In particular, a trajectory is typically smooth and generally unremarkable in its features. This contrasts the often suggested description: that of a highly convoluted and intricately structured ‘fractal’ curve. Some of the traditional dispersion results, which depend on the lagrangian statistics, are shown to be only weakly influenced by the intermittency inherent in the multifractal character of turbulence.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference65 articles.

1. High-order velocity structure functions in turbulent shear flows

2. The effect of homogeneous turbulence on material lines and surfaces

3. Batchelor G. K. 1953 The theory o f homogeneous turbulence. Cambridge University Press.

4. On the multifractal nature of fully developed turbulence and chaotic systems

5. The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion;Borgas M. S.;J. Fluid Mech.,1991

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3