Crack problems in a poroelastic medium: an asymptotic approach

Author:

Abstract

We consider problems involving semi-infinite cracks in a porous elastic material. The cracks are loaded with a time dependent internal stress, or pore pressure. Either mixed or unmixed pore pressure boundary conditions on the fracture plane are considered. An asymptotic procedure that partly uncouples the elastic and fluid responses is used, allowing an asymptotic expression for the stress intensity factors as time progresses to be obtained. The method allows the physical processes involved at the crack tip and their interactions to be studied. This is an advance on previous methods where results were obtained in Laplace transform space and inverted numerically to obtain real-time solutions. The crack problems are formulated using distributions of dislocations (and pore pressure gradient discontinuities when necessary) to generate integral equations of the Wiener—Hopf type. The resulting functional equations are, of course, identical to those considered by C. Atkinson and R. V. Craster, but with the alternative formulation we develop an asymptotic procedure which should be applicable to other problems (e.g. finite length cracks). This asymptotic procedure can be used to derive asymptotic expansions for more complicated loadings when the numerical effort involved in evaluating results would be excessive. A large-time asymptotic method is also briefly described which complements the small-time method. The operators for poroelastic crack problems are inverted for a particular loading; the reciprocal theorem for poroelasticity is used together with eigensolutions of the fundamental problems to deduce the stress (or where necessary the pore pressure gradient) intensity factors for any loading. These formulae extend previous results allowing a wide range of different loadings to be considered. As an example, the stress intensity factor for a point loaded crack is derived and the asymptotic method is applied to this problem to derive a simple asymptotic formula. Finally, an invariant integral, which is a generalization of the Eshelby energy-momentum tensor, is used to derive integral identities which serve as a check on the intensity factors in some situations.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the hydraulic fracture of poroelastic media;International Journal of Engineering Science;2020-10

2. Integral equations of the crack problem of poroelasticity: Discretization by Gaussian approximating functions;International Journal of Solids and Structures;2020-02

3. Effects of permeability conditions on time-dependent fracture of poroelastic media;Mechanics of Materials;2019-11

4. Cavities and cracks subjected to pressure of injected fluid in poroelastic media;International Journal of Engineering Science;2019-04

5. Time-dependent fracture of mode-I cracks in poroviscoelastic media;European Journal of Mechanics - A/Solids;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3