Oscillatory ignitions and cool flames in the oxidation of butane in a jet-stirred reactor

Author:

Abstract

The oxidation of butane ([C 4 H 10 ] : [ O 2 ] = 1.13:1.00) has been studied over the temperature and pressure ranges 371 ⩽ T/ K ⩽ 675, 226 ⩽ P /Torr ⩽ 489 in a jet stirred reactor with a residence time of 9.4 s (1 Torr ≈ 133.3 Pa), The gas temperature and pressure were probed and phase diagrams constructed delineating regions of oscillatory ignitions and cool flames, and high- and low -temperature stationary states. On heating at an initial pressure of 400 Torr from 570 K sharp transitions were observed, first to an oscillatory ignition and then to an oscillatory cool flame region, followed by a smooth transition to a high-temperature stationary state via a supercritical Hopf bifurcation. On cooling from this high - temperature stationary state, oscillatory cool flames were observed with a sharp extinction at 542 K, without any entry to the oscillatory ignition region. The latter could be entered, however, by suddenly cooling the system from the oscillatory cool flame region by temporarily substituting nitrogen for oxygen in the gas streams. Complex waveforms, consisting of bursts of oscillatory cool flames interspersed with periods of monotonic cooling, were also observed at lower pressures. A Nd : YAG pumped dye laser was used to probe laser induced fluorescence from form aldehyde in the oscillatory ignition region. Variations in the internal surface of the reactor demonstrated the significance of surface reactions. An outline mechanism, based on detailed numerical simulations, is presented to account for the shape of the ignition profiles and the transition from multiple ignitions to oscillatory cool flames.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low temperature n-butane oxidation skeletal mechanism, based on multilevel approach;Combustion and Flame;2010-04

2. Ignition and Oxidation of 50/50 Butane Isomer Blends;Journal of Engineering for Gas Turbines and Power;2010-03-04

3. Chemical Kinetic Mechanism for High Temperature Oxidation of Butane Isomers;Energy & Fuels;2007-01-01

4. Unravelling combustion mechanisms through a quantitative understanding of elementary reactions;Proceedings of the Combustion Institute;2005-01

5. Hydrocarbon Oxidation;Kirk-Othmer Encyclopedia of Chemical Technology;2000-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3