Evolutive spectral analysis of sunspot data over the past 300 years

Author:

Abstract

We analyse the series of the Wolf sunspot number in the frequency domain to determine the dimension of the solar cycle system by using the properties of its strange attractor and to study the stability in time of this dimensionality and of the main quasiperiodicities. The two classical methods of time series analysis, Fourier harmonic and Blackman-Tukey spectral analysis, have been applied first to the series of the annual Wolf sunspot numbers to determine its overall character. To detect stationarity, periodic regression based upon the three most statistically significant quasi-periods and especially a moving form of the maximum entropy spectrum analysis (mesa) have been used. Both analyses show a splitting of the 11-year cycle before 1800, when a ± 55-year cycle is dominant, and a single 11-year and + 100-year peak after 1800. Moreover, these quasi-periods are very sensitive to the time interval over which the analysis is carried out. The reason is that the sunspot numbers constitute a widely non-stationary process, which therefore implies that Fourier techniques are not useful to predict solar activity and must be used as fitting procedure only. The minimum cross-entropy method serves to improve the maximum entropy spectrum. With a good a priori estimate and data containing a low noise level, this method allows the detection of very close peaks and the refinement of the main frequencies; it does not split nor introduce artificial peaks. The Thomson model was also applied for its superior bias control, its excellent leakage resistance and a better statistical information. The same methods were then used to study the 22-year magnetic cycle, which is formed by taking into account the change in polarity of the succeeding 11 -year cycle. The moving form of mesa confirms the 22-year cycle to be highly stable in contrast to the instability in the period of the 11-year sunspot series. This suggests the importance of working with the more invariant 22-year magnetic series to explain the complex, non-stationary behaviour of the sunspot series and of the solar—terrestrial interactions. Finally, we tried to see if the system generated by the sunspot data was allowing the existence of an attractor and tried to determine the minimum number of variables necessary to describe this system. It is shown that the dimension of the attractor is highly unstable varying from 2.21 to 4.95 in a quasi-cyclic way.

Publisher

The Royal Society

Subject

General Engineering

Reference14 articles.

1. Bloomfield P. 1976 Fourier analysis of time series: an introduction. New York: Wiley.

2. THE RELATIONSHIP BETWEEN MAXIMUM ENTROPY SPECTRA AND MAXIMUM LIKELIHOOD SPECTRA

3. Long term periodicities in the sunspot cycle

4. Climate and the changing sun

5. Jenkins G. & Watts D. 1968 Spectral analysis and its applications. San Francisco: Holden-Day.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3