Time series analysis of Holocene climate data

Author:

Abstract

Holocene climate records are imperfect proxies for processes containing complicated mixtures of periodic and random signals. I summarize time series analysis methods for such data with emphasis on the multiple-data-window technique. This method differs from conventional approaches to time series analysis in that a set of data tapers is applied to the data in the time domain before Fourier transforming. The tapers, or data windows, are discrete prolate spheroidal sequences characterized as being the most nearly band-limited functions possible among functions defined on a finite time domain. The multiple-window method is a small-sample theory and essentially an inverse method applied to the finite Fourier transform. For climate data it has the major advantage of providing a narrowband F -test for the presence and significance of periodic components and of being able to separate them from the non-deterministic part of the process. Confidence intervals for the estimated quantities are found by jackknifing across windows. Applied to 14 C records, this method confirms the presence of the ‘Suess wiggles’ and give an estimated period of 208.2 years. Analysis of the thickness variations of bristlecone pine growth rings shows a general absence of direct periodic components but a variation in the structure of the time series with a 2360-year period.

Publisher

The Royal Society

Subject

General Engineering

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3