Nonlinear forecasting of non-uniform chaotic attractors in an enzyme reaction

Author:

Abstract

Nonlinear forecasting was used to predict the time evolution of fluctuating concentrations of dissolved oxygen in the peroxidase-oxidase reaction. This reaction entails the oxidation of NADH with molecular oxygen as the electron acceptor. Depending upon the experimental conditions, either regular or highly irregular oscillations obtain. Previous work suggests that the latter fluctuations are almost certainly chaotic. In either case, the dynamics contain multiple timescales, which fact results in an uneven distribution of points in the phase space. Such ‘nonuniformity,’ as it is called, is a rock on which conventional methods for analysing chaotic time series often founder. The results of the present study are as follows. 1. Short-term forecasting with local linear predictors yields results that are consistent with a hypothesis of low-dimensional chaos. 2. Most of the evidence for nonlinear determinism disappears upon the addition of small amounts of observational error. 3. It is essentially impossible to make predictions over time intervals longer than the average period of oscillation for time series subject to continuous and frequent sampling. 4. Far more effective forecasting is possible for points on Poincare sections. 5. An alternative means for improving forecasting efficacy using the continuous data is to include a second variable (NADH concentration) in the analysis. Since non-uniformity is common in biological time series, we conclude that the application of nonlinear forecasting to univariate time series requires care both in implementation and interpretation.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference36 articles.

1. Abraham N. B. Albano A. M. Passamante A. Rapp P. E. (eds) 1989 Measures of complexity and chaos. NATO ASI Series B vol. 208. New York: Plenum Press.

2. Is the normal heart a periodic oscillator?

3. Chaos and deterministic versus stochastic nonlinear modelling. Jl R. statist;Casdagli M.;Soc. B,1992

4. Ellner S. 1991 D etecting low-dimensional chaos in population dynamics data: a critical review. In Chaos and insect ecology (ed. J. A. Logan University Press of Virginia.

5. F. P. Hain) pp. 63-90. Blacksburg Virginia :

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3