Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology

Author:

Abstract

Oceanic lithosphere is produced at mid-ocean ridges and reinjected into the mantle at convergent plate boundaries. During subduction, this lithosphere goes through a series of progressive dehydration and melting events. Initial dehydration of the slab occurs during low pressure metamorphism of the oceanic crust and involves significant dewatering and loss of labile elements. At depths of 80-120 km water release by the slab is believed to lead to partial melting of the oceanic crust. These melts, enriched in incompatible elements (excepting Nb, Ta and Ti), fertilize the overlying mantle wedge and produce the enriched peridotitic sources of island arc basalts. Retention of Nb, Ta and Ti by a residual mineral (e.g. in a rutile phase) in a refractory eclogitic lithology within the sinking slab are considered to cause their characteristic depletions in island arc basalts. These refractory eclogitic lithologies, enriched in Nb, Ta and Ti, accumulate at depth in the mantle. The continued isolation of this eclogitic residuum in the deep mantle over Earth ’s history produces a reservoir which contains a significant proportion of the Earth’s Ti, Nb and Ta budget. Both the continental crust and depleted mantle have subchondritic Nb /La and Ti/Zr ratios and thus they cannot be viewed strictly as complementary geochemical reservoirs. This lack of complementarity between the continental crust and depleted mantle can be balanced by a refractory eclogitic reservoir deep in the mantle, which is enriched in Nb, Ta and Ti. A refractory eclogitic reservoir amounting to ca . 2% of the mass of the silicate Earth would also contain significant amounts of Ca and Al and may explain the superchondritic Ca/Al value of the depleted mantle.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference22 articles.

1. U-Th isotopic systematics at 13° N east Pacific ridge segment. Earth planet. Sci;Ben Othman;Lett.,1990

2. Implications of mantle plume structure for the evolution of flood basalts. Earth planet. Sci;Campbell I. H.;Lett.,1990

3. Phil. Trans. R. Soc.Land. A (1991)

4. Oceanic island Pb: two-stage histories and mantle evolution. Earth planet;Chase C. G.;Lett.,1981

5. U-Th-Ra radioactive disequilibria and magmatic processes. Earth planet. Sci;Condomines M.;Lett.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3