A spectral solution of the Boltzmann equation for the infinitely strong shock

Author:

Abstract

We formulate and implement a new spectral method for the solution of the Boltzmann equation, making extensive use of the theory of irreducible tensors together with the symbolic notation of Dirac. These tools are shown to provide a transparent organization of the algebra of the method and the efficient automation of the associated calculations. I he power of the proposed method is demonstrated by application to the highly nonlinear problem of the infinitely strong shock. It is shown that the distribution function can in this limit be decomposed into a singular part corresponding to the molecular beam, which represents the supersonic side of the shock, and a regular part, which provides the evolving ‘ background gas and covers the rest of velocity space. Separate governing equations for the singular and regular parts are derived, and solved by an expansion of the latter in an infinite series of orthogonal functions. The basis for this expansion is the same set that was used by Burnett ( Proc. Lond. math. Soc . 39, 385-430 (1935)), but is centred around the (fixed) downstream maxwellian. This basis, because of the presence of spherical harmonics which provide an irreducible representation of the group SO (3), lends itself to the utilization of powerful group-theoretic tools. The present expansion, not being about local equilibrium, does not imply any constitutive relations; instead it reduces the Boltzmann equation to an equivalent infinite-order nonlinear dynamical system. A solution with six modes shows encouraging convergence in the density profile, towards a shock thickness of about 6.7 hot-side mean free paths.

Publisher

The Royal Society

Subject

General Engineering

Reference42 articles.

1. Abramowitz M. & Stegun I. A. 1964 Handbook of mathematical functions. National Bureau of Standards. App. Math. Ser. 55.

2. Arrowsmith D. K. & Place C. M. 1982 Ordinary differential equations: a qualitative approach with applications. London: Chapman & Hall.

3. Balashov V. V. & Eltekov V. A. i960 Method of separating the relative motion of two nucleons in oscillator potential well. Nucl. Phys. 16 423-431.

4. Biedenharn L. C. & Louck J. D. 1981 The Racah-Wigner algebra in quantum theory. In Encyclopaedia of mathematics and its applications vol. 9. New York: Addison-Wesley.

5. The velocity distribution function within a shock wave

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3