Abstract
We consider the asymptotic theory for the dynamics of organizing filaments of three-dimensional scroll waves. For a generic autowave medium where two dimensional vortices do not meander, we show that some of the coefficients of the evolution equation are always zero. This simpler evolution equation predicts a monotonic change of the total filament length with time, independently of initial conditions. Whether the filament will shrink or expand is determined by a single coefficient, the filament tension, that depends on the medium parameters. We illustrate the behaviour of scroll wave filaments with positive and negative tension by numerical experiments. In particular, we show that in the case of negative filament tension, the straight filament is unstable, and its evolution may lead to a multiplication of vortices.
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Cited by
215 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献