Shock discontinuity zone effect: the main factor in the explosive decomposition detonation process

Author:

Abstract

A new qualitative conception of the detonation mechanism in condensed explosives has been developed on the basis of experimental and numerical modelling data. According to the conception the mechanism consists of two stages: non-equilibrium and equilibrium. The mechanism regularities are explosive characteristics and they do not depend on explosive charge structure (particle size, nature of filler in the pores, explosive state, liquid or solid, and so on). The tremendous rate of loading inside the detonation wave shock discontinuity zone ( ca. 10 -13 s) is responsible for the origin of the non-equilibrium stage. For this reason, the kinetic part of the shock compression energy is initially absorbed only by the translational degrees of freedom of the explosive molecules. It involves the appearance of extremely high translational temperatures for the polyatomic molecules. In the course of the translational-vibrational relaxation processes (that is, during the first non-equilibrium stage of ca. 10 -10 s time duration) the most rapidly excited vibrational degrees of freedom can accumulate surplus energy, and the corresponding bonds decompose faster than behind the front at the equilibrium stage. In addition to this process, the explosive molecules become electronically excited and thermal ionization becomes possible inside the translational temperature overheat zone. The molecules thermal decomposition as well as their electronic excitation and thermal ionization result in some active particles (radicals, ions) being created. The active particles and excited molecules govern the explosive detonation decomposition process behind the shock front during the second equilibrium stage. The activation energy is usually low, so that during this stage the decomposition proceeds extremely rapidly. Therefore the experimentally observed dependence of the detonation decomposition time for condensed explosives is rather weak.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference60 articles.

1. Barltrop J. A. & Coyle J. D. 1975 Excited states in organic chemistry. London: John Wiley.

2. Polymorphism in Benzene, Naphthalene, and Anthracene at High Pressure

3. A microscopic theory of compressive wave-induced reactions in solid explosives. J. chem;Coffey C. S.;Phys.,1981

4. Delpuech A. E. & Cherville J. & Michaud C. 1981 Molecular electronic structure and initiation

5. Phil. Trans. R. Soc. Lond. A (1992) of secondary explosives. In Proc. Seventh Symp. (Int.) on Detonation (ed. J. M. Short) pp. 65-74. Naval Surface Weapon Center U.S.A.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3