Singularities encountered in three-dimensional boundary layers under an adverse or favourable pressure gradient

Author:

Abstract

Singularities in solutions of the classical boundary-layer equations are considered, numerically and analytically, in an example of steady hypersonic flow along a flat plate with three-dimensional surface roughness. First, a wide parametric study of the breakdown of symmetry-plane flow is performed for two particular cases of the surface geometry. Emphasis is put on the structural stability of the singularities’ development to local/global variation of the pressure distribution. It is found that, as usual, the solution behaviour under an adverse pressure gradient involves the Goldstein- or marginal-type singularity at a point of zero streamwise skin friction. As the main alternative, typical of configurations with favourable or zero pressure forcing, an inviscid breakdown in the middle of the flow is identified. Similarly to unsteady flows, the main features of the novel singularity include infinitely growing boundary-layer thickness and finite limiting values of the skin-friction components. Subsequent analytical extensions of the singular symmetry-plane solution then suggest two different scenarios for the global boundary-layer behaviour: one implies inviscid breakdown of the flow at some singular line, the other describes the development of a boundary-layer collision at a downstream portion of the symmetry plane. In contrast with previous studies of the collision phenomenon in steady flows, the present theory suggests logarithmic growth of boundary-layer thickness on both sides of the discontinuity. Finally, an example of numerical solution of the full three dimensional boundary layer equations is given. The flow régime chosen corresponds to inviscid breakdown of a centreplane flow under a favourable pressure gradient and development of the discontinuity/collision downstream. The numerical results near the origin of the discontinuity are found to be supportive, producing quantitative agreement with the local analytical description.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for solving the equations describing the triple-deck interaction of a three-dimensional boundary layer with an outer inviscid transonic flow;Computational Mathematics and Mathematical Physics;2014-10

2. Wall shape effects on multiphase flow in channels;Theoretical and Computational Fluid Dynamics;2011-07-22

3. Method for solving the equations describing the interaction of a three-dimensional boundary layer with an outer inviscid flow;Computational Mathematics and Mathematical Physics;2007-03

4. On Local Perturbations of a Three-Dimensional Boundary Layer;Fluid Dynamics;2003

5. Blade-wake interactions and rotary boundary layers;Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences;1996-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3