On the oblique reflexion and transmission of ocean waves at shore fast sea ice

Author:

Abstract

A mathematical model is reported describing the oblique reflexion and penetration of ocean waves into shore fast sea ice. The arbitrary depth model allows all velocity potentials occurring in the open water region to be matched precisely to their counterparts in the ice-covered region. Matching is done using a preconditioned conjugate gradient technique which allows the complete solution to be found to a predefined precision. The model enables the reflexion and transmission coefficients at the ice edge to be found, and examples are reported for ice plates of different thicknesses. A critical angle is predicted beyond which no travelling wave penetrates the ice sheet; in this case the deflexion of the ice is due only to evanescent modes. Critical angle curves are provided for various ice thicknesses on deep, intermediate and shallow water. The strain field which is set up within the ice sheet due to the incoming waves is also discussed; principal strains are provided as are the strains normal to the ice edge. Finally the spreading function within the ice cover, and some consequences of this function to unimodal seas with realistic open water spreading functions, are reported with the aim of generalizing the work to model the effect of shore fast ice on an incoming directional wave spectrum of specified structure.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference53 articles.

1. Long-period gravity waves in ice-covered sea. J. geophys;Bates H. F.;Res.,1980

2. Evans D. V. & Davies T. V. 1968 Wave-ice interaction. New Jersey: Davidson Lab. Stevens Inst of Technol. Rep. 1313.

3. Directional spectra of seas near full development. J. phys;Ewing J. A.;Oceanogr.,1987

4. Ewing M. & Crary A. P. 1934 Propagation of elastic waves in ice. II. P hysics 5 181-184.

5. Ewing M. Crary A. P. & Thorne A. M. 1934 Propagation of elastic waves in ice. I. P hysics 5 165-168.

Cited by 273 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3