Introductory remarks

Author:

Abstract

The search for periodic or quasi-periodic variations in the solar constant through the analysis of climatic and meterological data has proved elusive. The reason is evident: the atmosphere is a wet gas with much energy stored as latent heat and is in complex interaction dynamically and thermally with the oceans and land areas. This confronts the investigator with a hydrodynamic problem of awesome difficulty and has hitherto frustrated attempts at weather prediction over more than a few days. The instabilities, what we call the weather, cause not only day-to-day but also year-to-year variations so great that many experts have concluded that these would have completely masked possible small changes due to fluctuations of the energy input from the Sun. Yet, as the seasonal changes of solar energy falling on each hemisphere result in such obvious effects, it should not be impossible to detect in the climatic records much smaller changes in the total global input of heat energy into the atmosphere, especially if these are cyclical, by integrating out short-term fluctuations.

Publisher

The Royal Society

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3