The solid state dehydration of d lithium potassium tartrate monohydrate is complete in two rate processes I. The deceleratory diffusion-controlled first reaction

Author:

Abstract

A kinetic and mechanistic study of the dehydration of d lithium potassium tartrate monohydrate has been undertaken. Water evolution is completed through two separate rate processes. The first reaction is the deceleratory, diffusion-controlled release of water from the superficial zones of the reactant crystals. The yield of this process corresponds to the dehydration of a superficial layer of crystal, thickness 10 µm. About 4% of the constituent water was evolved from the single crystals studied, rising to 50% from crushed powder reactants. The second reaction, reported in Part II, is a nucleation and growth process yielding the crystalline anhydrous salt. Gravimetric measurements for the first reaction identified three distinct dehydration processes. The first step was the rapid release of loosely bonded superficial water. The subsequent two deceleratory stages are characterized as diffusive loss of H 2 O molecules from a crystal zone that is at first ordered but later becomes disordered as the water-site vacancy concentration increases. Rate measurements based on water evolution measured the activation energy of this third step as 153 + 4 kJ mol -1 . Irreproducibility of rate data is ascribed to variations in numbers and distributions of imperfections between individual crystals. The extent and rate of the first reaction increased when initiated in small pressures of water vapour. Electron microscope observations identified a structural discontinuity ca. 1 µm below reacted crystal faces, evidence of superficial retexturing of the reactant. Rates of powder dehydrations were more reproducible than those of crystals but the kinetic behaviour was similar. The same rate equations were obeyed and the activation energy was unaltered. Water loss during the first reaction of this crystalline hydrate gives a comprehensive layer of extensively dehydrated material across all surfaces. Subsequently, in or under this water depleted layer, salt is recrystallized and dehydration continues as a nucleation and growth reaction (part II, following paper).

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference32 articles.

1. Baranov N. A. Okhotnikov V. B. Rynskaya L. I. Semenov A. R. Galwey A. K. & Laverty G. M. 1990 Solid State Ionics 43 37.

2. The kinetics and mechanism of water evolution from molten dl lithium potassium tartrate monohydrate

3. Experience in use of synchrotron radiation in solid state chemistry studies

4. Brown M. E. Dollimore D. & Galwey A. K. 1980 Comprehensive chemical kinetics vol. 22. A m sterdam : Elsevier.

5. Carr N. J. & Galwey A. K. 1986 Proc. R. Soc. Lond. A 404. 101.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3