The optical and electronic properties of semiconducting diamond

Author:

Abstract

In this paper I review the evidence that shows that the optical and electronic properties of semiconducting diamond can be understood in terms of boron acceptors partially compensated by deep donors. In natural semiconducting diamond, in which the total impurity concentration is less than 1 ppm, there is a lot of fine structure in the acceptor absorption spectrum that is not fully understood, and the electrical conductivity is primarily associated with the thermally activated excitation of holes from the acceptor ground state to the valence band. Some of the problems regarding the analysis of Hall effect data in this material are discussed, including the temperature dependences of the scattering mechanisms, of the contribution from the split-off valence band and of the population of excited states. There are no adequate theoretical descriptions of any of these processes, and this leads to some uncertainties in the values of the parameters derived from the temperature dependence of the Hall coefficient. For boron-doped synthetic diamond, and thin film diamond grown by chemical vapour deposition (CVD), the defect concentrations are generally much higher, and much more inhomogeneous, than in natural semiconducting diamond. This results in a substantial broadening of the acceptor absorption spectrum and the electronic properties are greatly modified by increasing contributions from impurity band conduction as the acceptor concentrations are increased, leading to very low mobility values. For both poly crystalline and single crystal homoepitaxial CVD diamond, measurements of the electrical properties can be completely invalidated by the presence of a surface layer of non-diamond carbon.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3