Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions

Author:

Abstract

This paper deals with the theoretical-numerical and experimental treatment of two dimensional avalanches of cohesionless granular materials moving down a confined curved chute. Depth-averaged field equations of balance of mass and linear momentum as prescribed by Savage & Hutter (1991) are used. They describe the temporal evolution of the depth averaged streamwise velocity and the distribution of the avalanche depth and involve two phenomenological parameters, the internal angle of friction, ϕ,and the bed friction angle, δ, both as constitutive properties of Coulomb-type behaviour. The equations incorporate weak to moderate curvature effects of the bed. Experiments were carried out with different granular materials in a chute with partly convex and partly concave curved geometry. In these experiments the motion of the granular avalanche is followed from the moment of release to its standstill by using high speed photography, whence recording the geometry of the avalanche as a function of position and time. Two different bed linings, drawing paper and no. 120 SIA sandpaper, were used to vary the bed friction angle, δ. Both, the internal angle of friction, ϕ, and the bed friction angle, δ, were measured, and their values used in the theoretical model. Because of the bump and depending upon the granulate-bed combination an initial single pile of granular avalanche could evolve as a single pile throughout its motion and be deposited above or below the bump in the bed; or it could separate in the course of the motion into two piles which are separately deposited above and below the bump. Comparison of the experimental findings with the computational results proved to lead to good to excellent correspondence between experiment and theory. Even the development of the detailed geometry of the granular avalanche is excellently reproduced by the model equations, if δ < ϕ. Occasional deviations may occur; however, they can in all cases be explained by onsetting instabilities of the numerical scheme or by experimental artefacts that only arise when single particles have shapes prone to rolling.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference7 articles.

1. Anderson D. A. Tannehill J. C. & Pletcher R. H. 1984 Computational fluid mechanics and heat transfer. McGraw-Hill.

2. Greve R. 1991 Zur Ausbreitung einer Granulatlawine entlang gekrummter Flachen. Diploma thesis performed on Department of Mechanics Technological Institute Darmstadt.

3. Two- and three-dimensional evolution of granular avalanche flow - theory and experiments revisited;Hutter K.;ActaMech. (Suppl.),1991

4. Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions

5. Hutter K. Koch T. Pliiss Ch. & Savage S. B. 1992 Dynam ics of avalanches of granular materials from initiation to runout. Part II. Laboratory experiments. (In preparation.)

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3