Energetic particles in solar flares: theory and diagnostics

Author:

Abstract

Recent progress and future prospects in diagnostics of energetic electrons and ions in the flares are reviewed, together with the roles they play in the flare as a whole. Most of the discussion centres on hard X-ray and gamma-ray and thermal plasma emission data, rather than on radio sources. Since Solar Maximum Mission and Hinotori there has been major progress in all areas of flare electron diagnostics. Electron spectra are now recoverable with some precision, electrons with energies above 10 MeV are known to be highly anisotropic, and indications are available of the spatial distribution of electrons at 20 keV. Timescales of electron acceleration are now known to be shorter than 0.1 s. Energetic electrons are believed to carry much of the flare power. Ion diagnostics are more limited. For greater than 1 MeV ions the flux, spectrum and acceleration timescale are now quite well known. Low energy ions are hard to diagnose but have been invoked as a flare heating mechanism alternative to electron beams. The problems with beam heating models are discussed with special attention to the problems of the low energy proton model and its only direct diagnostic, Hα impact polarization. Finally, theoretical problems associated with return currents and with accelerator requirements are discussed and attention is drawn to the possible importance of entropy as well as energy considerations.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference64 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of observations of linear polarization for H α emission of flares and moustaches;Bulletin of the Crimean Astrophysical Observatory;2011-06

2. RADIO EMISSION FROM SOLAR FLARES;Annual Review of Astronomy and Astrophysics;1998-09

3. Protons in flares;Space Science Reviews;1995-08

4. Flare energy transport by conduction and radiation;Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences;1991-09-16

5. References;Astronomy and Astrophysics Library

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3