Abstract
This paper concerns the two-dimensional motion of a viscous liquid down a perturbed inclined plane under the influence of gravity, and the main goal is the prediction of the surface height as the fluid flows over the perturbations. The specific perturbations chosen for the present study were two humps stretching laterally across an otherwise uniform plane, with the flow being confined in the lateral direction by the walls of a channel. Theoretical predictions of the flow have been obtained by finite-element approximations to the Navier-Stokes equations and also by a variety of lubrication approximations. The predictions from the various models are compared with experimental measurements of the free-surface profiles. The principal aim of this study is the establishment and assessment of certain numerical and asymptotic models for the description of a class of free-surface flows, exemplified by the particular case of flow over a perturbed inclined plane. The laboratory experiments were made over a range of flow rates such that the Reynolds number, based on the volume flux per unit width and the kinematical viscosity of the fluid, ranged between 0.369 and 36.6. It was found that, at the smaller Reynolds numbers, a standard lubrication approximation provided a very good representation of the experimental measurements but, as the flow rate was increased, the standard model did not capture several important features of the flow. On the other hand, a lubrication approximation allowing for surface tension and inertial effects expanded the range of applicability of the basic theory by almost an order of magnitude, up to Reynolds numbers approaching 10. At larger flow rates, numerical solutions to the full equations of motion provided a description of the experimental results to within about 4% , up to a Reynolds number of 25, beyond which we were unable to obtain numerical solutions. It is not known why numerical solutions were not possible at larger flow rates, but it is possible that there is a bifurcation of the Navier-Stokes equations to a branch of unsteady motions near a Reynolds number of 25.
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献