Liquid crystalline polymers: self-organization and assembly

Author:

Abstract

Liquid crystal forming monomers, typically rods, can be polymerized to form long mesogenic molecules. In contrast to simple rods, these polymers often have internal degrees of freedom so that they display the subtle behaviour of both high polymers and simple liquid crystals. They can have the rod elements either concatenated as a back-bone to give main chain (MC), or pendant to a back-bone to give side chain (SC) liquid crystals, or both. The physics unique to liquid crystalline polymers (LCPS) comes from their shape being dependent on the state of nematic order. Simple systems remain molecular rods (or disks) on ordering whereas a chain extends or flattens (depending on whether or not the nematic order is prolate or oblate). New phenomena as a result of this occur in situations as disparate as networks and, it is predicted, in dielectric response. We examine both SC and MC LCPS and the mechanisms by which they order lyotropically (in solution) and therm otropically (in the melt). Various types of models will be discussed in general and then restricted to the therm otropic case, lyotropic systems being discussed in Lekkerkerker & Vroege (this volume). The transition to the ordered state is first order as in simple nematics. The main characteristics of this state are modified chain conformations and, additionally for side chain polymers, transitions between various novel competing nematic states. A form of self-assembly that is a delicate function of the nematic order is observed in transesterifying LCPS. The number of chain ends is conserved but material exchanged between chains according to whether they are in the isotropic or nematic state. We review a model of this type of self-assembly.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference7 articles.

1. The theory of elasticity of rubbers with orientational interactions;Abramchuk S. S.;Vysokomol. Soedineniya A,1989

2. Molecular theory of high elasticity of the polymer networks taking into account the orientational ordering of links. Na.uk;Abramchuk S. S.;SSSJR,1987

3. A small-angle neutron scattering study of a semiflexible main-chain liquid crystalline copolyester

4. Bladon P. Liu H. & Warner M. Macromolecules 25 4329-4338. 1992 Biaxial effects in nematic comb-like polymers.

5. Elasticity of nematic networks and nematic effects in conventional rubbers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3