Abstract
Machines and mechanisms with moving parts, subjected to periodic excitation, often show unexpected dynamic behaviour, and impacts due to their connection clearances may occur. The most simple mathematical model is a one degree-of-freedom nonlinear oscillator governed by a piecewise linear symmetric function to describe the restoring force. The system’s response, which can be quite rich and complicated, is described in detail. Modern methods for a combined analytical and numerical analysis are used to study local and global bifurcation conditions, coexisting solutions and their associated domains of attraction.
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Reference18 articles.
1. Grebogi C. Ott E. & Yorke J. 1983 Crises sudden changes in chaotic attractors and transient chaos. Physica 1)7 181-200.
2. Haack. C. 1990 Rechnergestutzte Verfahren zur Analyse nichtlinearer dynamischer Probleme. Diplomarbeit DT PL-28 Universitat S tuttgart.
3. A Generalized theory of cell-to-cell mapping for nonlinear dynamical systems. ,/. appl;Hsu C.;Mech.,1981
4. Kleczka M. 1991 Methoden zur Verzweigungsanalyse mit Anwendung aus einen Spielschwinger. Fortschr.-Ber. V D I R e i h e 11 no.153. Diisseldorf: VDI-Verlag.
5. Kleczka M. Kreuzer E. & Wi Inters Ch. 1990a Crises in mechanical systems. In Proc. 1UTAM Symp.on Nonlinear Dynamics in Engineering Systems W. Schiehlen pp. 141 148. Berlin:
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献